Статический расчет

Номер заказа:	1
Проект:	Балочная клетка
Застройщик:	
Проектировщик:	ТЕХСОФТ
Архитектор:	

Обозн. проекта Балочная клетка Стр. 2

Дата 04.03.2011 Проект Балочная клетка

Содержание

позиция	Описание	раница
		_
ΤЛ	Титульный лист	1
Содержан	ие	2
1	Исходные данные	3
2	Расчет настила и определение нагрузок на балку настила	4
3	Балка настила	5
4	Главная балка	12
5	Одноярусная колонна общего вида	20
6	Столбчатый фундамент	25

Позиция

Проект Балочная клетка

Дата

04.03.2011

mb BauStatik S018 2010.030

Исходные данные Pos. 1

Исходные данные

A=		12.00	М	Шаг колонн в продольном направлении
B=		6.00	М	Шаг колонн в поперечном направлении
H=		8.00	М	Высота колонны
h	_	0.00		Палана по

Предельная строительная высота перекрытия h _{стр} 2.00

p H = 24.00 кН/м2 Временная нормативная нагрузка

Материал консткукций:

настил - сталь C245

балки настила и вспомогательные балки - сталь C245

главные балки - сталь C245

колонны - ж/б:

бетон класса B25

продольная арматура A500 поперечная арматура A300 фундаменты - бетон класса B25

Допустимый относительный прогиб 1/150.00

Опирание колонны на оснований шарнирное

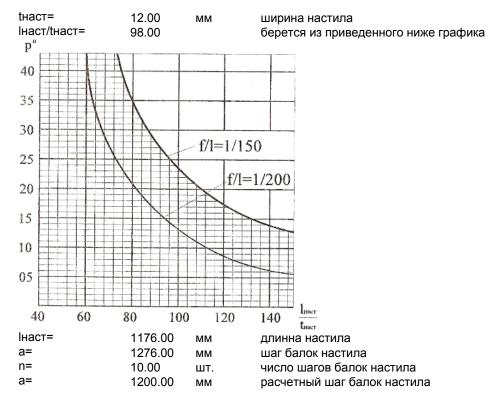
 $k_1 =$ 1.05 Коэффициент надежности по нагрузке 1 $k_2 =$ 1.20 Коэффициент надежности по нагрузке 2 $k_3 =$ 1.40 Коэффициент надежности по нагрузке 3

Позиция

Дата

04.03.2011

mb BauStatik S018 2010.030


Проект

Балочная клетка

Pos. 2

Расчет настила и определение нагрузок на балку настила

Расчет стального плоского настила

Определение нагрузок на балку настила

γ ж =		78.50	кH/м ³	объемная масса стали
q ^H наст	=	0.94	кH/м ²	масса 1 м2 настила
q + ch =		1.26	кH/м ²	нормативная снеговая нагрузка на 1 м2

04.03.2011

Статика/320 2010

Проект

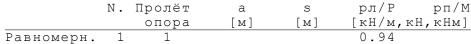
Балочная клетка

Поз. 3

Балка настила

Расчётная схема

M = 1 : 55


Опоры

<u>Нагружение</u> Нагружение 1 M = 1 :50

постоянные нагрузки $\gamma f = 1.05$

Нагружение 2 М = 1 :50 кратковременные нагрузки γ f = 1.20

	Ν.	Пролёт	a	s	рл/Р	рп/М
		опора	[M]	[M]	[кН/м,кН	Ι,κΗм]
Равномерн.	1	1			24.00	

04.03.2011

Проект

Балочная клетка

Статика/320 2010

Дата

Проект

Балочная клетка

Статика/320 2010

Дата

Проект

Балочная клетка

Статика/320 2010

Α

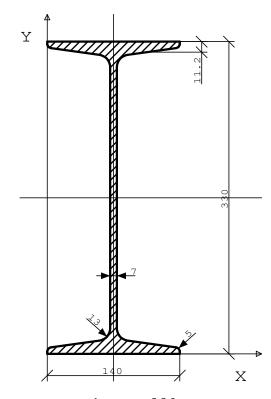
0.00

0.00

4

Сечение балки

Дата


Статика/320 2010

Проект

Балочная клетка

Профиль І 33 M = 1 : 4

двутавр горячекатанный, ГОСТ 8239-89

Параметры сечения

330мм высота h =ширина b = 140мм толщ.полки t = 11.2мм толщ.стенки tw = 7.0мм 53.8cm2 мом.инерции Ix = 9845.см4 площадь А = 339.см3 мом.инерции Іу = 419.4 cm4CT.MOMEHT SX = св.круч. It = 22.7см4 сект.момент Іw =1.026е5см6 Mom.conp. W =597.см3 мом.сопр.сж Wc = 596.6см3

Материал балки

сталь С245 мод.упруг. Е = 206.ГПА мод.сдвига G =79.2ГПа сопр.изг. Ry = 240.МПА сопр.сдвигу Rs = 139.МПа

Результаты расчета Критическое РСУ

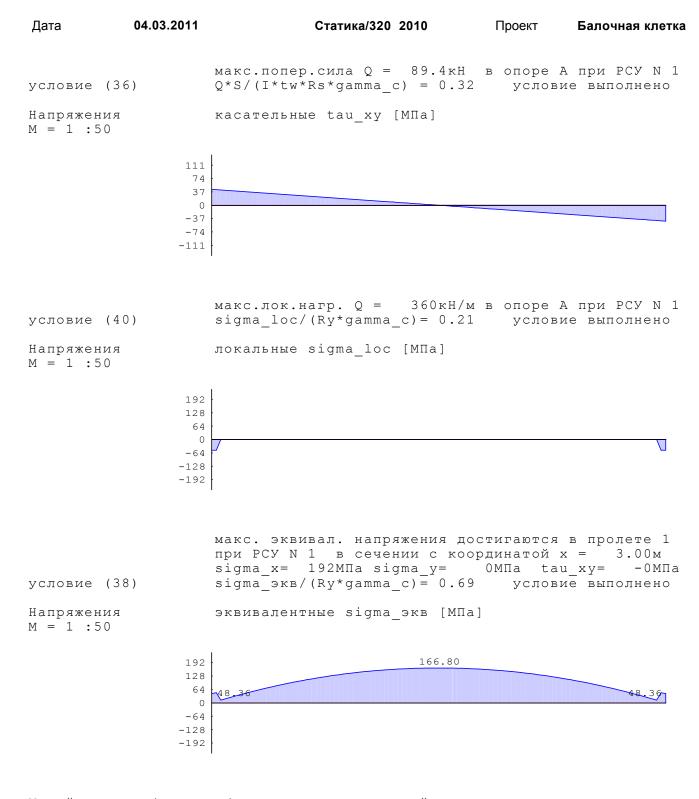
балки 1-го класса по СП 53-102-2004, gamma c=1.00 N нагр коэф. пролеты

1.05 1 1.20 2

Расчет на прочность макс.момент М =

134кнм достигается в пролете 1 при РСУ N 1 в сечении с координатой x = M/(W*Ry*gamma c) = 0.94условие выполнено

Напряжения M = 1 : 50


условие (35)

нормальные sigma x [МПа]

64 0 -64

192 128

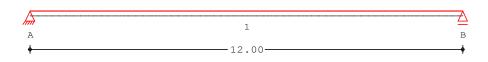
-128

Устойчивость балки обеспечена непрерывной связью с жестким настилом, согласно п. 9.4.4a СП 53-102-2004.

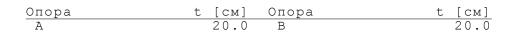
04.03.2011

Статика/320 2010

Проект

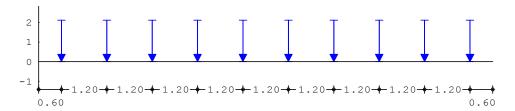

Балочная клетка

Поз. 4

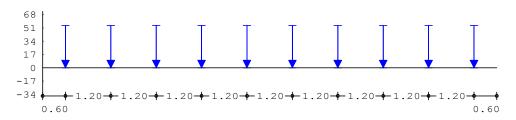

Главная балка

Расчётная схема

M = 1 : 105



Опоры


<u>Нагружение</u> Нагружение 1 М = 1 :100

постоянные нагрузки $\gamma f = 1.05$

	Ν.	Пролёт	a	S	рл/Р	рп/М
		опора	[M]	[M]	[кН/м,к	Н,кНм]
Сосредот.	1	1	0.60		2.83	_
	2	1	1.80		2.83	
	3	1	3.00		2.83	
	4	1	4.20		2.83	
	5	1	5.40		2.83	
	6	1	6.60		2.83	
	7	1	7.80		2.83	
	8	1	9.00		2.83	
	9	1	10.20		2.83	
	1 0	1	11 40		2 83	

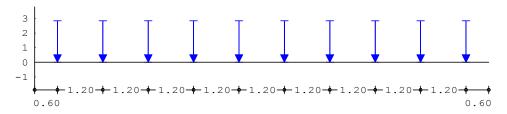
Нагружение 2 М = 1 :100 кратковременные нагрузки $\gamma f = 1.20$

	Ν.	Пролёт	a	S	рл/Р	рп/М
		опора	[M]	[M]	[кН/м,к	І,кНм]
Сосредот.	1	1	0.60		72.00	_
	2	1	1.80		72.00	

Дата

04.03.2011

Статика/320 2010

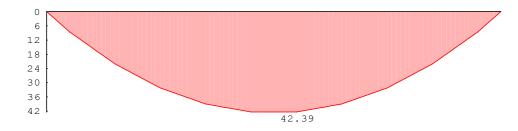

Проект

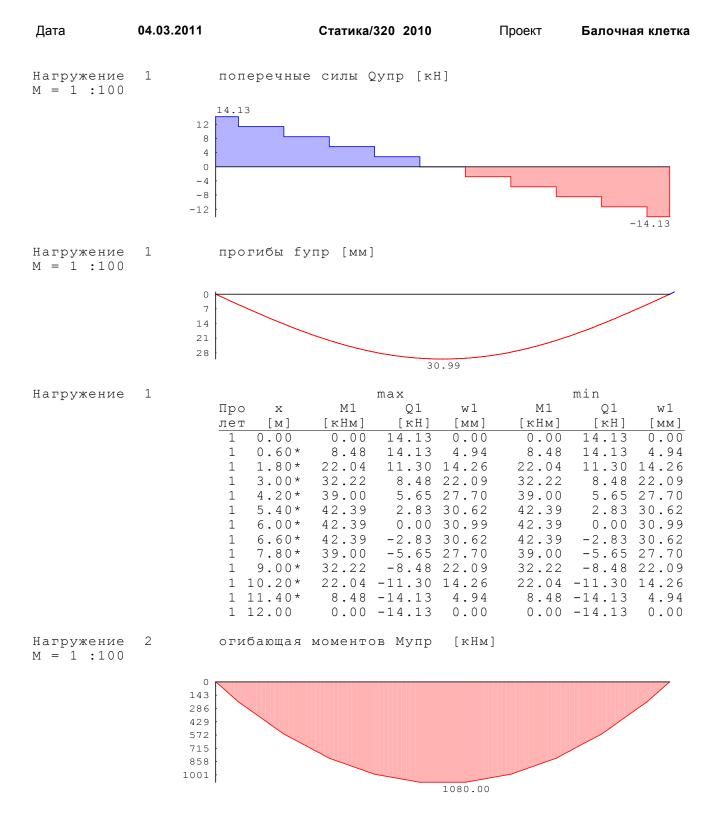
Балочная клетка

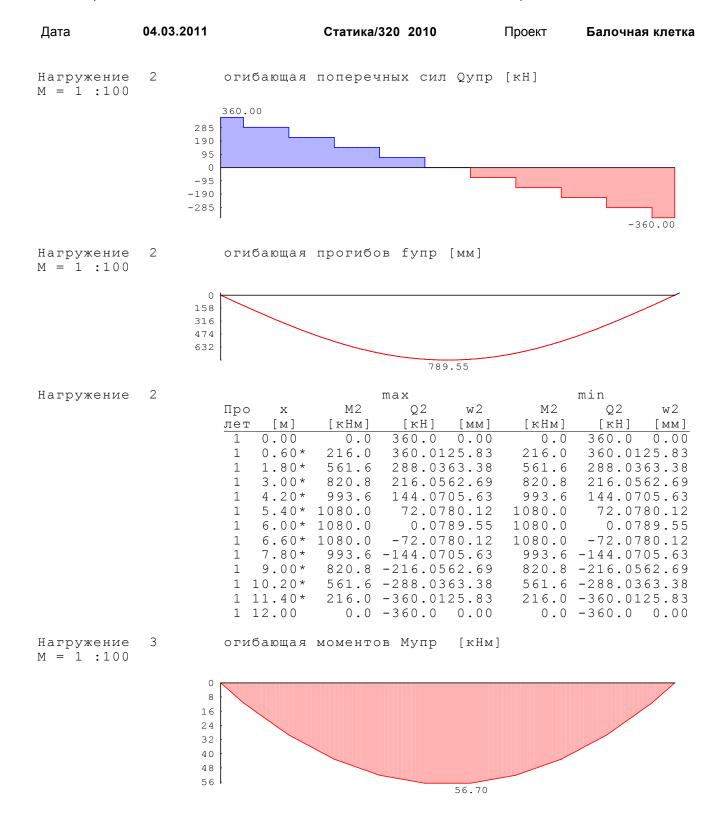
Ν.	Пролёт опора	а [м]	s [M]	рл/Р [кН/м,к	рп/М Н , кНм]
3	1	3.00		72.00	_
4	1	4.20		72.00	
5	1	5.40		72.00	
6	1	6.60		72.00	
7	1	7.80		72.00	
8	1	9.00		72.00	
9	1	10.20		72.00	
10	1	11.40		72.00	

Нагружение М = 1 :100

кратковременные нагрузки $\gamma \, f = 1.40$




	Ν.	Пролёт	a	s	рл/Р рп/	
		опора	[M]	[M]	[кН/м,кН,кНм	[]
Сосредот.	1	1	0.60		3.78	
	2	1	1.80		3.78	
	3	1	3.00		3.78	
	4	1	4.20		3.78	
	5	1	5.40		3.78	
	6	1	6.60		3.78	
	7	1	7.80		3.78	
	8	1	9.00		3.78	
	9	1	10.20		3.78	
	10	1	11.40		3.78	


Усилия в сечении

по линейно упругой теории

Нагружение 1 М = 1 :100 моменты Мупр [кНм]

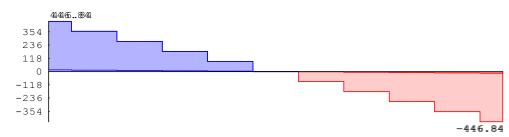
Дата

Проект

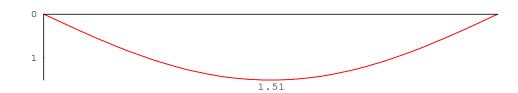
Балочная клетка

Статика/320 2010

1340.51


Дата 04.03.2011

Статика/320 2010


Проект

Балочная клетка

Попер. сила Q [кН] основные сочетания усилий М = 1 :100

Прогибы [мм] М = 1 :100 основные сочетания усилий

Расчетные сочетания усилий и перемещений

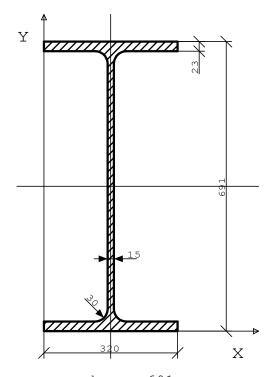
	max					min		
Про	X	Mpcy	Qрсу	wpcy	Мрсу	Qpcy	wpcy	
лет	[M]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]	
1	0.00	0.00	446.84	0.00	0.00	14.84	0.00	
1	0.60*	268.10	446.84	0.24	8.90	14.84	0.24	
1	1.80*	697.06	357.47	0.69	23.14	11.87	0.69	
1	3.00*	1018.79	268.10	1.07	33.83	8.90	1.07	
1	4.20*	1233.27	178.73	1.35	40.95	5.93	1.35	
1	5.40*	1340.51	89.37	1.49	44.51	2.97	1.49	
1	6.00*	1340.51	0.00	1.51	44.51	0.00	1.51	
1	6.60*	1340.51	-2.97	1.49	44.51	-89.37	1.49	
1	7.80*	1233.27	-5.93	1.35	40.95-	-178.73	1.35	
1	9.00*	1018.79	-8.90	1.07	33.83-	-268.10	1.07	
1 1	10.20*	697.06	-11.87	0.69	23.14-	-357.47	0.69	
1 1	11.40*	268.10	-14.84	0.24	8.90-	-446.84	0.24	
1 1	12.00	0.00	-14.84	0.00	0.00-	-446.84	0.00	

Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[ĸH]
основные РСУ	A	446.84	14.84
	В	446.84	14.84

Сечение балки

Дата


Статика/320 2010

Проект

Балочная клетка

Профиль І 70Ш2 M = 1 : 9

двутавр широкополочный, ГОСТ 26020-83

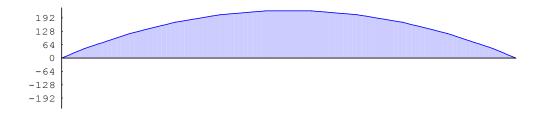
Параметры сечения

высота h =691мм ширина b = 320мм толщ.полки t = 23.0мм толщ.стенки tw = 15.0мм площадь A = 252.см2 мом.инерции Ix = 2.055е5см4 ст.момент Sx =3.36e3cm3 мом.инерции Iy =1.260e4cm4 св.круч. It = 393.см4 сект.момент Iw =1.386e7см6 MOM.CORP. W = 5.95e3cM3 $MOM.CORP.C \times WC = 5949.cM3$

Материал балки

сталь С245 206.ГПА мод.сдвига G = мод.упруг. Е = сопр.изг. Ry = 240.МПА сопр.сдвигу Rs = 139.МПа

Результаты расчета Критическое РСУ


балки 1-го класса по СП 53-102-2004, gamma c=1.00 N нагр коэф. пролеты 1 1.05 1.20

условие (35)

Расчет на прочность макс.момент M = 1.34e3кHм достигается в пролете 1 при РСУ N 1 в сечении с координатой $x = 5.40 \,\mathrm{m}$ M/(W*Ry*gamma c) = 0.94условие выполнено

Напряжения M = 1 : 100

нормальные sigma x [МПа]


```
04.03.2011
                                  Статика/320 2010
Дата
                                                       Проект
                                                                 Балочная клетка
                      макс.поп.сила Q = 447 \text{кH} достигается в пролете 1
                      при РСУ N 1 в сечении с координатой x = 11.40м
условие (36)
                      Q*S/(I*tw*Rs*gamma c) = 0.35
                                                        условие выполнено
Напряжения
                     касательные tau xy [MПа]
M = 1 : 100
                  111
                        48.798.96 29.219.48
                   74
                   37
                   0
                  -37
                  -74
                  -111
                      макс.лок.нагр. Q = 1.46e3kH/m в опоре В при РСУ N 1
                      sigma loc/(Ry*gamma c) = 0.41 условие выполнено
условие (40)
Напряжения
                      локальные sigma loc [МПа]
M = 1 : 100
                  192
                  128
                   64
                    0
                  -64
                  -128
                  -192
                      макс. эквивал. напряжения достигаются в пролете 1
                      при РСУ N 1 в сечении с координатой x = 5.40м
                      sigma_x = 191M\Pi a sigma_y = 0M\Pi a tau_xy = 0
условие (38)
                      sigma 9 \text{KB} / (\text{Ry*gamma c}) = 0.69
                                                        условие выполнено
Напряжения
                      эквивалентные sigma экв [MПa]
M = 1 : 100
                                      152.70 165.98 165.98
                  192
                      87.59
33.286.31
                  128
                              126.14
                                                                       87.59
                   64
                    0
                  -64
                  -128
                  -192
Устойчивость балки
                     обеспечена выполнением п. 9.4.46 СП 53-102-2004.
                      Наиболее опасное состояние при РСУ 1 в пролете 1
                                                          sigma = 225MΠa
                      расч.длина lef = 1.09м напряж.
                      усл. гибк. lam_b = 0.12 пред. гибк. lam_ub = 0.33
```

CM

Расчетная схема

Статика/410 2010

Проект

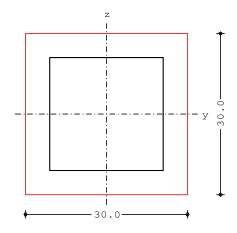
Балочная клетка

Поз. 5

04.03.2011

Одноярусная колонна общего вида

= 8.000


Ширина и высота сечения

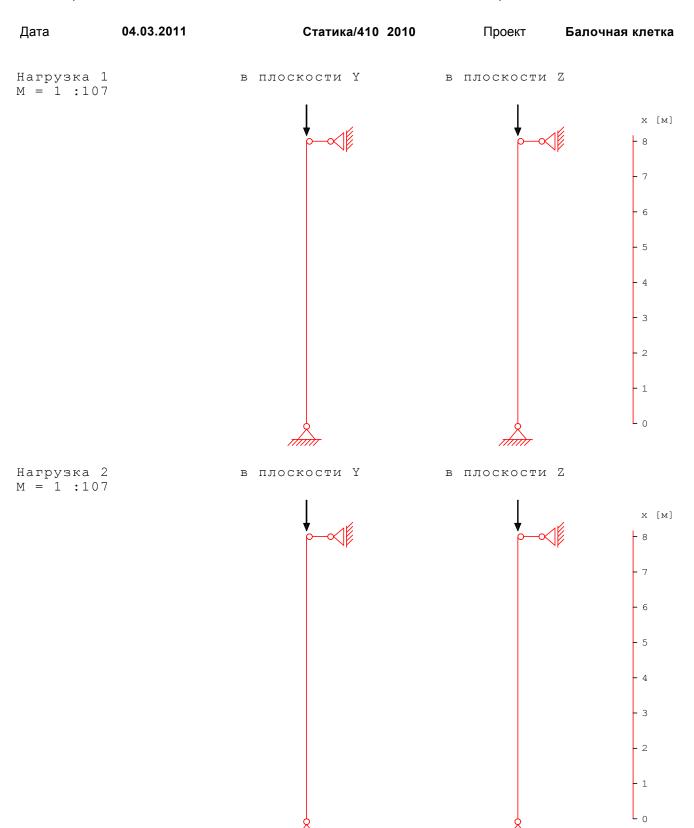
Длина колонны

b = h = 30.0

M = 1 : 7

Дата

Закрепления


	В плоскости У	В плоскости Z
Сверху	шарнирное	шарнирное
Снизу	шарнирное	шарнирное

Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.05		
2	Кратковременная К1 = 0.00	1.20		
3	Кратковременная К1 = 0.00	1.40		

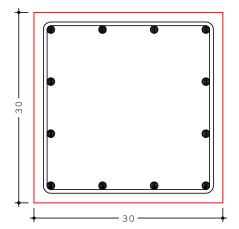
Вертикальные силы

N^{o}	X	V	еу	ez
	[M]	[ĸH]	[CM]	[CM]
1	8.00	28.3		
2	8.00	720.0		
3	8 00	37 8		

К 2 Усилия от полной нагрузки и ее длительной части (с учетом \mathbf{e}_{a})

X	N	Му	Μz	Nl	Myl	Mzl
[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]
8.00	893.67	11.92	11.92	29.67	0.40	0.40
6.67	893.67	11.92	11.92	29.67	0.40	0.40
5.33	893.67	11.92	11.92	29.67	0.40	0.40
4.00	893.67	11.92	11.92	29.67	0.40	0.40
2.67	893.67	11.92	11.92	29.67	0.40	0.40
1.33	893.67	11.92	11.92	29.67	0.40	0.40
0.00	893.67	11.92	11.92	29.67	0.40	0.40

Дата	04.03.2011	Ста	атика/410 2010	Проект	Балочна	я клетка
К 2 Расчетн	ый момен	г в плоскости	Y			
	00 1.0 00 1.0 00 1.0 00 1.0 00 1.0 00 1.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D [MHM2] 8.27 8.27 8.27 8.27 8.27 8.27 8.27	Ncr [KH] 1274.6 1274.6 1274.6 1274.6 1274.6 1274.6	η [-] 3.346 3.346 3.346 3.346 3.346 3.346 3.346	η*Mz [кНм] 39.9 39.9 39.9 39.9 39.9 39.9
К 2 Расчетн	ый момен	г в плоскости	Z			
	0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0	φ1 δ ε [-] 033 0.150 033 0.150 033 0.150 033 0.150 033 0.150 033 0.150 033 0.150 033 0.150 033 0.150 033 0.150	D [MHM2] 8.27 8.27 8.27 8.27 8.27 8.27 8.27	Ncr [KH] 1274.6 1274.6 1274.6 1274.6 1274.6 1274.6	η [-] 3.346 3.346 3.346 3.346 3.346 3.346 3.346	η*My [кнм] 39.9 39.9 39.9 39.9 39.9 39.9
Требуемая ар	рматура	Расстояние до Площадь на ка на ка Общая площадь Коэффициент а	ждую b-сторо ждую h-сторо арматуры рмирования	Hy As1 Hy As2 Astot μ tot	= 1.36	CM CM ² CM ² CM ² %
Конструирова	ание	чения прочнос dmin [мм]	dmax [мм]	nmax	а не требу amir	1 [MM]
		12 Диаметр хомут Минимальная т для продольно для поперечно	олщина защит й арматуры	dsw ного слоя min as min asw	= 6 = 20 = 15	25 мм мм мм
Выбранные с	тержни	Место На угол На b-сторону На h-сторону	n 1 2 2	ds [MM] 12 12 12	As	[CM2] 1.13 2.26 2.26
		Общее число с	тержней	ntot	= 12	_
		Защитный слой		аз	= 15	MM
		Длина анкеров			= 416	MM
		Общая площадь Коэффициент а		Astot μ tot		CM ² %


04.03.2011

Статика/410 2010

Проект

Балочная клетка

M = 1 : 6

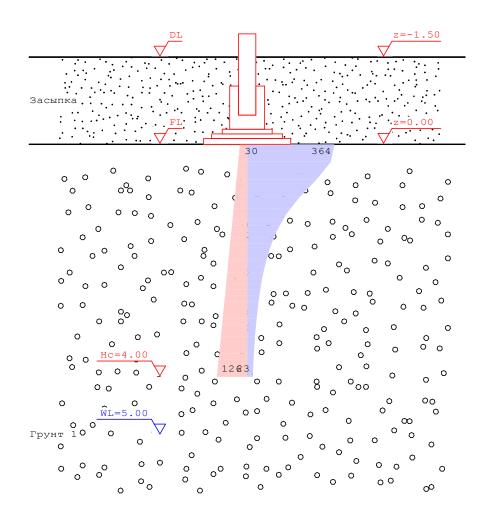
Стержни: 12 ϕ 12 Хомут: ϕ 6 Защитный слой: аз = 15 мм

04.03.2011

Статика/535 2010

Проект

Балочная клетка

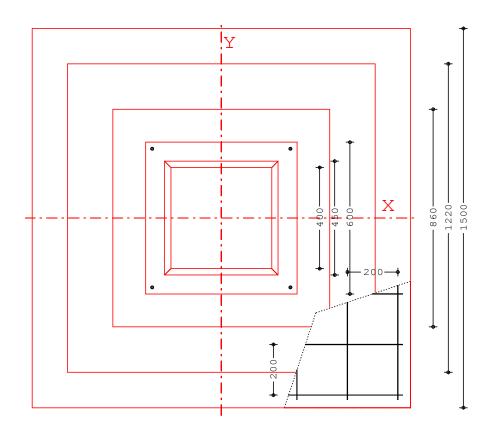

Поз. 6

Столбчатый фундамент

Данные для расчета

Схема расположения слоев грунта

M = 1 : 65



Грунт	N Слой Тип грунта в слое							
	1 Засыпка Песок средней крупности							
	2 Грунт 1	Грунт 1 Щебнистый с пылевато-глин. заполни						инит.
	Нормативные значения характеристик по слоям.							
	ПИП	Z	g	E	fi	c/Rc	е	ΙL
		[м] [к	Н/м3]	[МПа]	[град]	[кПа]	[%]	
	Засыпка	-1.50	20.0	40.0	20.0	0.0	60.0	
	Грунт 1	0.00	24.0	40.0	30.0	2.0	40.0	0.50
Размеры	Объект ра	змеры п	о Х и	по Ү	высс	та/глу	/бина	h/dc
]	CM]	[CM]			[CN	4]
	плита	10	0.0 1	100.0			10.	. 0
	подколонник	6	0.0	60.0			90.	. 0
	колонна	3	0.0	30.0			50.	. 0
	Высота фунда	амента	от под	дошвы	100.0	CM		

Дата	04.03.2011		Статика	/535 2010		Проект	Балочная	клетка
Нагрузки		N Нагру				Му [кН*м]	Qх [кН]	Qу [кН]
		 Постоян Кратков Кратков 	рем.	28.3 720.0 37.8	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
<u>РСУ</u> Усилия и мо	менты	расчетные для опасны N Тип РСУ 1 тр.кр. 2 тр.дл. 3 основ. 4 основ.	табл. коэф. 1 2 3	на высол N	Mx	подошвы Му [кН*м] 0.0 0.0	2.01.07 Фундаме Qx [кН] 0.0 0.0 0.0	
Наиболее оп сочетания у		<u>руж. 1</u> 1 1.00	2 1.00 1	нты РСУ 3 4 .05 1.00 .00 0.90	руж. О 2	1	ициенты 2 3 50 1.20	РСУ 4 0.90
Результаты	расчета	геометриче Объект р плита 1 плита 2 плита 3 подколонни	азмеры	по X и [см] 150.0 122.0 86.0		ундамент		. 0
Схема фунда М = 1 :15	мента	вид сбоку		00	-			
					550		1000	
	<u>.</u>		4				80	
	\$	+		20	+	 +		

Дата **04.03.2011 Статика/535 2010** Проект **Балочная клетка**

Схема фундамента вид сверху M = 1 : 15

Расчет основания по СП 50-101-2004

Расчет по деформациям Схема линейно деформируемого полупространства. Наибольшая осадка достигается при РСУ N 1. Hc = 4.00Глубина сжимаемой толщи р=363.5 кПа Среднее давление под подошвой ру=363.5 кПа Краевое давление вдоль оси у Краевое давление вдоль оси х рх=363.5 кПа Давление в угловой точке рху=363.5 кПа Расчетное сопротивление грунта по 2.41 R=337.9 кПа Сопротивление грунта с учетом 5.5.24 R=405.4 кПа Осадка фундамента s=1.0 cm < su=100.0Наибольший крен достигается при РСУ N 4, i=0.0000 < iu=0.0050Крен фундамента

Расчет по несущей способности

Наиболее опасным по устойчивости является РСУ N 3. Макс. глубина поверхности скольжения zm=2.02 м Сила предельного сопротивления грунта Nu=2217 кН

Продавливание.

04.03.2011

Проект

Балочная клетка

Статика/535 2010

Тяжелый бетон. Класс прочности В25.

Расчет на продавливание по СП 52-101-03.